Finding and Investigating Exact Spherical Codes
نویسنده
چکیده
In this paper we present the results of computer searches using a variation of an energy minimization algorithm used by Kottwitz for finding good spherical codes. We prove that exact codes exist by representing the inner products between the vectors as algebraic numbers. For selected interesting cases, we include detailed discussion of the configurations. Of particular interest are the 20-point code in
منابع مشابه
Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملLinear Programming Bounds for Spherical Codes and Designs
We describe linear programming (LP) techniques used for obtaining upper/lower bounds on the size of spherical codes/spherical designs. A survey of universal bounds is presented together with description of necessary and sufficient conditions for their optimality. If improvements are possible, we describe methods for finding new bounds. In both cases we are able to find new bounds in great range...
متن کاملImproved Delsarte Bounds via Extension of the Function Space
A spherical (n,N, α)-code is a set {x1, . . . ,xN} of unit vectors in R such that the pairwise angular distance betweeen the vectors is at least α. One tries to find codes which maximize N or α if the other two values are fixed. The kissing number problem asks for the maximum number k(n) of nonoverlapping unit balls touching a central unit ball in n-space. This corresponds to the special case o...
متن کاملAn Exact Solution for Lord-Shulman Generalized Coupled Thermoporoelasticity in Spherical Coordinates
In this paper, the generalized coupled thermoporoelasticity model of hollow and solid spheres under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the generalized coupled equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit...
متن کاملAn Exact Solution for Kelvin-Voigt Model Classic Coupled Thermo Viscoelasticity in Spherical Coordinates
In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Mathematics
دوره 18 شماره
صفحات -
تاریخ انتشار 2009